На какой день клетки делятся на двоих

Деление клетки приводит к образованию из одной материнской клетки двух или многих дочерних. Если деление ядра материнской клетки сразу же сопровождается делением ее цитоплазмы, появляются две дочерние клетки. Но бывает и так: ядро многократно делится, а уже затем вокруг каждого из них обособляется часть цитоплазмы материнской клетки. В этом случае из одной исходной клетки сразу формируется несколько дочерних клеток.

По характеру распределения ядерного материала между дочерними клетками различают два способа деления клеток: непрямое деление — митоз и прямое деление — амитоз. Из них гораздо более распространен митоз. За исключением некоторых деталей он протекает однотипно и в животных, и в растительных клетках. Биологическое значение митоза состоит в том, что он обеспечивает очень точное распределение между дочерними клетками ядерной ДНК, находящейся в хромосомах. Благодаря этому дочерние клетки биохимически и генетически оказываются одинаково полноценными.

Митоз осуществляется в четыре последовательные фазы. Первая фаза — профаза — характеризуется видимыми изменениями в ядре клетки, которые свидетельствуют о ее подготовке к делению. Ядро разбухает, в нем видны переплетенные между собой хромосомы. Молекулы ДНК в таких хромосомах находятся в спирализованном состоянии. К концу профазы хромосомы укорачиваются и становится уже заметно, что каждая из них продольно разделена пополам, хотя обе половины, которые называются хроматидами, еще сближены. В цитоплазме на двух противоположных полюсах клетки располагаются разделившиеся центриоли. От них друг к другу тянутся ахроматиновые нити веретена. В конце профазы растворяется ядерная Оболочка.

Следующая фаза — метафаза — характерна расположением всех хромосом, еще более укоротившихся, в середине клетки, в ее экваториальной плоскости. Часть нитей ахроматинового веретена, отходяших от центриолей, прикрепляется к хромосомам. Именно в метафазе легче всего подсчитать число хромосом, рассмотреть их форму. Во всех клетках, кроме половых, число хромосом всегда четное. Все организмы одного вида имеют одинаковое число хромосом. Так, у мягкой пшеницы их 42, у твердой пшеницы — 28, у курицы — 78, у овцы — 54, а у плодовой мушки дрозофилы — 8. Кроме того, удалось установить, что четное число состоит из нескольких пар хромосом. Так, у твердой пшеницы таких пар 14 (14×2=28), у дрозофилы — 4 пары. Позже мы увидим, что не только по форме, но и по генетическим особенностям хромосомы одной пары очень сходны, а иногда и идентичны между собой. Такие парные хромосомы называются гомологичными. Поэтому сумма всех хромосом в метафазе в общем виде обозначается величиной 2n, где n — число пар гомологичных хромосом. Набор хромосом, равный 2n, называется диплоидным набором.
В метафазе некоторые нити веретена, идущие от центриолей, другими своими концами прикрепляются к хромосомам. К концу метафазы становится особенно заметно, что каждая хромосома расщеплена продольно: нити, идущие от противоположных центриолей, начинают сокращаться, и щели между половинками каждой хромосомы расширяются.

В анафазе — третьей фазе митотического деления клетки — этот процесс ускоряется. В результате одна половинка каждой хромосомы отходит к одному полюсу клетки, другая — к другому. К концу анафазы на противоположных полюсах клетки собираются все расщепившиеся хромосомы; 2n таких новых хромосом (бывших «половинок») на одном полюсе и 2n — на другом. Таким образом, каждая из двух будущих дочерних клеток получает по совершенно одинаковому набору хромосом, повторяющему набор, который имела до деления материнская клетка. В этом-то и состоит биологический смысл митоза.

Телофаза — завершающая фаза деления клетки. Собранные на полюсах материнской клетки хромосомы свиваются в клубок, утончаются. Индивидуальность каждой хромосомы уже трудно прослеживается в световом микроскопе. Однако она не теряется. На каждом полюсе клетки вокруг хромосом образуется ядерная оболочка. Цитоплазма клетки тоже начинает делиться по экваториальной плоскости. К концу телофазы вместо одной клетки возникают две новые. Так заканчивается митоз — непрямое деление клетки. Образовавшиеся дочерние клетки растут, достигают обычных для них размеров и снова начинают готовиться к следующему делению. Период между двумя делениями носит название интеркинеза.

Таким образом, жизнь каждой отдельной клетки охватывает один митоз и один интеркинез. По продолжительности митоз значительно короче интеркинеза. В тканях, где постоянно делятся клетки, митоз может длиться у разных клеток разных организмов от нескольких минут до 2-3 ч, а интеркинез — от 10 ч до 20 дней.

Во время интеркинеза в клетке осуществляются все основные процессы обмена веществ и энергии. Хромосомы в этот период хоть и не видны, но продолжают сохранять свою индивидуальность, что подтверждено целым рядом специальных экспериментов. Составляющие их внутреннюю часть молекулы ДНК находятся в деспирализованном (раскрученном) состоянии и направляют синтетические реакции в клетке. Перед следующим делением осуществляется и важный процесс самоудвоения молекул ДНК в хромосомах ядра. Процесс саморепродукции молекул ДНК был описан в предыдущей главе. Здесь лишь отметим, что саморепродукция молекул ДНК неразрывно связана с процессом удвоения и расщепления хромосом: из двух идентичных молекул ДНК одна попадает в одну половину расщепившейся хромосомы, другая — в другую. Поэтому две дочерние клетки, возникающие при делении, получают весь объем биохимической и генетической информации, которым обладала ядерная ДНК материнской клетки.
К числу важных изменений в клетке, происходящих в интерфазе и подготавливающих клетку к следующему делению, относятся: спирализация и укорочение половинок хромосом; удвоение центриолей; синтез белков будущего ахроматинового веретена. Клетка заканчивает свои рост и готова вступить в профазу следующего митоза.

При амитозе такого точного распределения ядерного вещества между дочерними клетками не происходит. В этом случае ядро просто перешнуровывается пополам, а вслед за ним — и цитоплазма клетки. Амитоз в жизни многоклеточных организмов занимает незначительное место.

В течение жизни многоклеточного организма не все его клетки постоянно делятся. Многие из них, приобретая ту или иную специализацию, перестают делиться. При этом однифункционируют в течение всей жизни организма (нервные клетки), а другие — только определенный cрок, а затем отмирают и замещаются более молодыми клетками. Так происходит, например, с эритроцитами крови млекопитающих. Каждый эритроцит, попадая в кровяное русло, уже больше не делится, живет и выполняет свои функции в течение примерно 120 дней, а затем погибает. Его место занимают новые молодые эритроциты, возникающие из делящихся клеток в специальных кроветворных органах.

Таким образом, жизнь каждой отдельной клетки охватывает один митоз и один интеркинез. По продолжительности митоз значительно короче интеркинеза. В тканях, где постоянно делятся клетки, митоз может длиться у разных клеток разных организмов от нескольких минут до 2-3 ч, а интеркинез — от 10 ч до 20 дней.

В самом начале процесса деления клетки хроматин ядра начинает собираться в маленькие нитевидные формы. Эти нити хроматина называют хромосомами. Число хромосом разное в клетках различных видов животных. У мухи, например, только восемь хромосом в ее клетках, а у лангуста — более ста. Все клетки любого животного одного вида (об исключениях мы будем говорить в следующей главе) имеют то же самое число хромосом. В человеческих клетках, например, хроматин во время процесса деления клетки собирается ровно в 48 хромосом.

Поскольку хроматин в течение деления клетки собирается в небольшие нитевидные формы, процесс деления клетки называется митозом, от греческого слова «нить».

После того как сформировались хромосомы, ядерная мембрана исчезает, и вещества из ядра смешиваются с цитоплазмой. Хромосомы тем временем вытягиваются поперек клетки посередине.

Это — решающий момент. Его называют метафазой. Хромосомы остаются в середине клетки, и через некоторое время каждая хромосома внезапно дублируется хромосомой-компаньоном, выстраивающейся в линию рядом с первоначальной хромосомой. В делящейся клетке человека число хромосом, таким образом, увеличивается с 48 до 96 в метафазе.

После метафазы все происходит довольно-таки быстро. Сначала хромосомы отделяются друг от друга. Один набор в 48 хромосом (в человеческих клетках) перемещается в один конец клетки. Другой набор в 48 хромосом — в другой конец клетки.

Хромосомы в каждом конце клетки затем охватываются новыми ядерными мембранами. В течение короткого времени клетка обладает сразу двумя ядрами. В пределах каждого ядра хромосомы начинают развертываться и теряют свою нитевидную форму. Но они не распадаются и не растворяются. Это можно сравнить с тем, как если бы сильно натянутая струна, после того как ее отпустили, вдруг ослабла и стала бы длинной и закручивающейся. Именно так хромосомы развертываются в хроматин и пребывают в ожидании следующего разделения клетки, когда они еще раз формируют хромосомы.

После того как эти два ядра сформировались в противоположных концах клетки, клетка начинает в середине суживаться. Середина становится все более и более узкой, пока клетки не обособятся. У protozoa две получившиеся клетки отсоединяются друг от друга и становятся двумя отдельными индивидуумами. У metazoa две дочерние клетки остаются на месте. Новая клеточная мембрана, однако, теперь отделяет две части того, что когда-то было одной клеткой.

Теперь вернемся к метафазе. Одна необычная вещь, которая может нас заинтересовать в процессе митоза, — удвоение хромосом. Все остальное — просто вопрос деления вещества клетки на две равные части и отделение их друг от друга мембраной.

Вы можете спросить: «Не происходит ли то же самое и с хромосомами? Не делится ли каждая хромосома просто по ее длине, становясь двумя хромосомами?»

Чтобы ответить на этот вопрос, нам недостаточно заниматься рассмотрением только самой клетки или даже ядра. Мы должны обратить наше внимание на саму хромосому.

После того как эти два ядра сформировались в противоположных концах клетки, клетка начинает в середине суживаться. Середина становится все более и более узкой, пока клетки не обособятся. У protozoa две получившиеся клетки отсоединяются друг от друга и становятся двумя отдельными индивидуумами. У metazoa две дочерние клетки остаются на месте. Новая клеточная мембрана, однако, теперь отделяет две части того, что когда-то было одной клеткой.

Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл – переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению – можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, — основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.

При образовании гамет, т.е. половых клеток – сперматозоидов и яйцеклеток – происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер — обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.

Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).

Рекомендуем прочесть:  Современные Противозачаточные Средства Женщинам После 35

Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.

Каждое из вновь образовавшихся ядер получило весь объем генетической информации, которым обладала ядерная ДНК материнской клетки. В результате митоза оба дочерних ядра имеют одинаковое количество ДНК и одинаковое число хромосом, такое же, как в материнском.

Цитокинез – после образования в телофазе двух новых ядер происходит деление клетки и формирование в экваториальной плоскости перегородки – клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами, не достигая их, формируется цилиндрическая система волокон, называемая фрагмопластом, которая также как и волокна ахроматинового веретена, состоит из микротрубочек и связаны с ним. В центре фрагмопласта на экваторе между дочерними ядрами скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке, а их мембраны участвуют в построении плазмолемм по обеим сторонам пластинки. Клеточная пластинка закладывается в виде диска, взвешенного в фрагмопласте. Волокна фрагмопласта, видимо, контролируют направление движения пузырьков Гольджи. Клеточная пластинка растет центробежно по направлению к стенкам материнской клетки за счет включения в нее полисахаридов все новых и новых пузырьков Гольджи. Клеточная пластинка имеет полужидкую консистенцию, состоит из аморфного протопектина и пектатов магния и кальция. В это время из трубчатого ЭР образуются плазмодесмы. Расширяющийся фрагмопласт постепенно приобретает форму бочонка, позволяя клеточной пластинке расти латерально, пока она не соединится со стенками материнской клетки. Фрагмопласт исчезает, обособление двух дочерних клеток заканчивается. Каждый протопласт откладывает на клеточную пластинку свою первичную клеточную стенку.

Цитокинез с помощью клеточной пластинки происходит у всех высших растений и некоторых водорослей. У остальных организмов клетки делятся внедрением клеточной оболочки, которая постепенно углубляется и разделяет клетки.

Биологическое значение митоза состоит в строго одинаковом распределении между дочерними клетками материальных носителей наследственности – молекул ДНК, входящих в состав хромосом. Благодаря равномерному разделению реплицированных хромосом между дочерними клетками обеспечивается образование генетически равноценных клеток и сохраняется преемственность в ряду клеточных поколений. Это обеспечивает таки важные моменты жизнедеятельности, как эмбриональное развитие и рост организмов, восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологической основой бесполого размножения организмов.

Мейоз. Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое и переход клеток из диплоидного состояния (2n) в гаплоидное (n). Мейоз – единый, непрерывный процесс состоящий из двух последовательных делений, каждое из которых можно разделть на те же, что и в митозе, четыре фазы: профазу, метафазу, анафазу и телофазу. Обоим делениям предшествует одна интерфаза. В синтетическом периоде интерфазы до начала мейоза удваивается количество ДНК и каждая хромосома становится двухроматидной.

Первое мейотическое, или редукционное, деление.

Профаза I продолжается от нескольких часов до нескольких недель. Хромосомы спирализуются. Гомологичные хромосомы коньюгируют, образуя пары – биваленты. Бивалент состоит из четырех хроматид двух гомологичных хромосом. В бивалентах осуществляется кроссинговер – обмен гомологичными участками гомологичных хромосом, что приводит к их глубокому преобразованию. Во время коссинговера происходит обмен блоками генов, что объясняет генетическое разнообразие потомства. К концу профазы исчезает ядерная оболочка и ядрышко, формируется ахроматиновое веретено.

Метафаза I – биваленты собираются в экваториальной плоскости клетки. Ориентирование материнской и отцовской хромосомы из каждой гомологичной пары к одному или другому полюсу веретена деления является случайным. К центромере каждой из хромосом присоединяется тянущая нить ахроматинового веретена. Две сетринские хроматиды не разделяются.

Анафаза I – происходит сокращение тянущих нитей, и к полюсам расходятся двухроматидные хромосомы. Гомологичные хромосмы каждого из бивалентов уходят к противоположным полюсам. Расходятся случайно перераспределенные гомологичные хромосомы каждой пары (независимое распределение), и на каждом из полюсов собирается половинное число (гаплоидный набор) хромосом, образуется два гаплоидных набора хромосом.

Телофаза I – у полюсов веретена собирается одиночный, гаплоидный, набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочернии.

Второе мейотическое деление следует сразу же после первого и сходно с обычным митозом (поэтому его часто называют митозом мейоза), только клетки, вступающие в него, несут гаплоидный набор хромосом.

Профаза II – непродолжительная.

Метафаза II – снова образуется веретено деления, хромосомы выстраиваются в экваториальной плоскости и центормерами прикрепляются к микротрубочкам веретена деления.

Анафаза II – осуществляется разделение их ценромер и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам веретена.

Телофаза II – завершается расхождение сестринских хромосом к полюсам и наступает деление клеток: из двух гаплоидных клеток образуются 4 клетки с гаплоидным набором хромосом.

Редукционное деление является как бы регулятором, препятствующим непрерывному увеличению числа хромосом при слиянии гамет. Не будь такого механизма, при половом размножении число хромосом удваивалось бы в каждом новом поколении. Т.е. благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях каждого вида растений, животных, протист и грибов. Другое значение заключается в обеспечении разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их расхождении в анафазе I мейоза. Это обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Анафаза II – осуществляется разделение их ценромер и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам веретена.

ДЕЛЕНИЕ КЛЕТОК

Описание: Интерфаза Один из постулатов клеточной теории гласит что увеличение числа клеток их размножение происходит путем деления исходной клетки. Многоклеточный организм также начинает свое развитие всего с одной единственной клетки; путем многократных делений образуется огромное количество клеток которые и составляют организм. В многоклеточном организме не все клетки имеют способность к делению по причине их высокой специализации. Время существования клетки как таковой – от деления до деления – обычно называют клеточным циклом.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Митотический цикл. Интерфаза

Один из постулатов клеточной теории гласит, что увеличение числа клеток, их размножение происходит путем деления исходной клетки. Это положение полностью исключает какое-либо «самозарождение» клеток или их образование из неклеточного «живого вещества». Обычно делению клеток предшествует редупликация их хромосомного аппарата, синтез ДНК. Это правило является общим для прокариотических и эукариотических клеток.

Если делится одноклеточный организм, то возникают два новых. Многоклеточный организм также начинает свое развитие всего с одной единственной клетки; путем многократных делений образуется огромное количество клеток, которые и составляют организм. В многоклеточном организме не все клетки имеют способность к делению по причине их высокой специализации.

Время существования клетки как таковой – от деления до деления – обычно называют клеточным циклом . Продолжительность его может быть различной для разных типов клеток. Так, для бактериальных клеток в стационарных условиях культивирования это время может быть равно 20-30 минут. У эукариотических одноклеточных организмов время жизни клетки, продолжительность ее клеточного цикла, значительно больше. Например, инфузория-туфелька может делиться 1-2 раза в сутки, время клеточного цикла при бесполом размножении у амебы составляет около 1,5 сут., у инфузории трубача – 2-3 сут. Продолжительность клеточного цикла зависит от температуры и условий окружающей среды.

В организме высших позвоночных клетки различных тканей и органов обладают неодинаковой способностью к делению. Здесь встречаются клетки, полностью потерявшие свойство делиться: это большей частью специализированные, высоко дифференцированные клетки (например, клетки центральной нервной системы). В организме есть постоянно обновляющиеся ткани (различные виды эпителия, кровь, клетки рыхлой и плотной соединительных тканей). В этом случае в таких тканях существует часть клеток, которые постоянно делятся (например, клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга и селезенки), заменяя отработавшие или погибающие клеточные формы. Многие клетки, не размножающиеся в обычных условиях, приобретают вновь это свойство при процессах репаративной регенерации органов и тканей.

Примерно такие же формы клеток по способности их вступать в деление встречаются и у растительных организмов.

Клетки многоклеточных животных и растительных организмов, так же как и одноклеточные эукариотические организмы, вступают в период деления после ряда подготовительных процессов, важнейшим из которых является синтез ДНК. Совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению и сам период деления называется митотическим циклом .

У одноклеточных организмов клеточный цикл совпадает с жизнью особи. В непрерывно размножающихся тканевых клетках клеточный цикл совпадает с митотическим циклом и состоит из интерфазы и собственно деления. Выделяют два типа интерфазы в зависимости от состояния интерфазного ядра.

1. Автосинтетическая интерфаза (промежуток времени между двумя делениями клетки) – ей соответствует состояние ядра в непрерывно делящихся клетках.

2. Гетеросинтетическая интерфаза (промежуток времени, когда клетка перестает делиться на длительное время или навсегда) – ей соответствует состояние ядра в неделящихся клетках.

Автосинтетическая интерфаза включает в себя 3 периода:

1) постмитотический или пресинтетический – G 1 : клетка растет, восстанавливает ядерно-плазменное отношение, синтезирует характерные для нее белки и выполняет свою собственную функцию; в этом же периоде синтезируются ферменты, необходимые для редупликации ДНК;

2) период синтеза – S : происходит редупликация ДНК и синтез гистонных белков (ДНП), то есть удвоение хромосом; в S -периоде происходит синтез р-РНК, использующейся в следующем периоде для синтеза белков, необходимых для митоза;

3) премитотический или постсинтетический – G 2 : активно синтезируются белки митотического веретена (тубулин), путем почкования удваиваются центриоли клеточного центра, продолжается синтез клеточных РНК и белков, увеличивается количество внутриклеточных структур, накапливается энергия (в виде АТФ). То есть, клетка активно готовится к митозу.

Таким образом, весь клеточный цикл состоит как бы из четырех отрезков времени: собственно деление, пресинтетический ( G 1 ), синтетический ( S ) и постсинтетический ( G 2 ) периоды. Как было установлено, общая продолжительность как всего клеточного цикла, так и отдельных его периодов значительно варьирует не только у разных организмов, но и у клеток разных органов одного организма. Но для клеток одного органа эти величины относительно постоянны. Длительность S -периода зависит от скорости редупликации ДНК, от числа и величины репликонов и от общего количества ДНК, но она примерно постоянна для клеток данного типа и составляет 4-8 часов. Продолжительность остальных периодов клеточного цикла зависит от типа клетки, возраста, температуры, времени суток и других факторов. Особенно вариабельны G 1 и G 2 -периоды; они могут значительно удлиняться, особенно у так называемых покоящихся клеток. В этом случае выделяют G 0 -период, или период покоя. С учетом периода покоя клеточный цикл может длиться недели и даже месяцы (клетки печени), а у нейронов клеточный цикл равен продолжительности жизни организма.

Для соматических клеток характерны четыре способа деления: митоз, амитоз, эндомитоз и эндорепродукция. Половые клетки делятся мейозом.

Митоз. Типы митоза. Регуляция митотической активности

Митоз , то есть непрямое деление, – основной способ деления эукариотических клеток.

Впервые митоз в спорах плауна наблюдал русский ученый И.Д. Чистяков в 1874 г.. Детально исследовали поведение хромосом при митозе немецкий ботаник Э. Страсбургер (1876-79 гг., в клетках растений) и немецкий гистолог В. Флеминг (1882 г., в клетках животных).

Процесс непрямого деления клеток принято подразделять на несколько основных фаз: профаза, метафаза, анафаза, телофаза . Границы между этими фазами установить точно очень трудно, потому что сам митоз представляет собой непрерывный процесс, и смена фаз происходит очень постепенно – одна из них незаметно переходит в другую. Единственная фаза, которая имеет реальное начало, это анафаза – начало движения хромосом к полюсам. Длительность отдельных фаз митоза различна, наиболее короткая по времени анафаза.

Рекомендуем прочесть:  Могут ли не увидеть мальчика на всех узи

Рассмотрим каждую фазу более подробно.

Профаза . Для первой фазы митоза характерны пять основных процессов.

1. Удвоенные еще в интерфазе хромосомы начинают спирализоваться (конденсироваться), проходя последовательно стадии плотного клубка, рыхлого клубка, затем клубок распадается на отдельно лежащие хромосомы.

2. Разрушается и исчезает ядрышко.

3. Ядерная мембрана распадается на фрагменты, которые отходят к периферии клетки вместе с участками ЭПС.

4. Центриоли расходятся к полюсам, и образуется веретено деления из микротрубочек 2-х типов: хромосомные (хроматиновые ), которые связываются впоследствии с центромерами хромосом, и центросомные (или полюсные , или ахроматиновые ), которые тянутся от полюса к полюсу и служат направляющими при движении хромосом. Микротрубочки начинают формироваться со стороны центриолей (у животных клеток) или со стороны хромосом (у растительных клеток, т.к. у них отсутствуют центриоли).

5. В связи с разрушением ядерной мембраны кариоплазма смешивается с цитоплазмой и образуется миксоплазма , в которой и лежат спирализованные хромосомы в области распавшегося ядра.

Метафаза . Во время метафазы завершается образование веретена деления. Хромосомы движутся в область экватора путем пульсации их собственных центромер (активное движение), прикрепляются к хромосомным микротрубочкам веретена своими центромерами и образуют метафазную пластинку («материнская звезда» ).

Анафаза. Центромеры материнских хромосом делятся, удвоенные хромосомы разделяются на хроматиды (дочерние хромосомы), которые расходятся к полюсам клетки. Это движение является пассивным, так как осуществляется под действием двух факторов: тянущее действие трубочек веретена и незначительное удлинение самой клетки. Скорость движения хроматид составляет в среднем 0,2-0,5 мкм/мин. У полюсов образуются фигуры, называемые «дочерние звезды ». В этот момент в клетке присутствуют два диплоидных набора хромосом.

Телофаза. Для телофазы характерны процессы, обратные профазе.

1. Происходит деспирализация хромосом в обратном порядке по сравнению с профазой: стадия рыхлого клубка, стадия плотного клубка, затем хромосомы достигают стадии хроматина и становятся невидимы в световой микроскоп.

2. Формируется ядерная оболочка, причем внутренняя мембрана образуется из фрагментов оболочки материнского ядра, а наружная – из цистерн и каналов гранулярной ЭПС.

3. Происходит восстановление ядрышка в области ядрышкового организатора.

4. Разрушается веретено деления.

5. Главный процесс телофазы – разделение цитоплазмы, или цитокинез (цитотомия). В животных и растительных клетках цитокинез происходит по-разному. В животных клетках плазматическая мембрана впячивается внутрь в области, где располагался экватор веретена. По-видимому, это происходит благодаря сокращению микрофиламентов, которые здесь находятся. В результате впячивания образуется непрерывная борозда, опоясывающая клетку по экватору. В конце концов, клеточные мембраны в области борозды смыкаются, полностью разделяя две дочерние клетки (т.е. происходит перешнуровка клетки).

В результате митоза из одной клетки возникают две дочерние с тем же набором хромосом. Митотическое деление является цитологической основой бесполого размножения организмов.

Типы митоза . Дальнейшая судьба дочерних клеток, образовавшихся в результате митоза, неодинакова, вследствие чего различают 3 типа митоза:

1. Стволовой , при котором образуются две одинаковые клетки, которые в дальнейшем размножаются с той же интенсивностью, давая группу однородных клеток. Такой тип митоза характерен для большинства клеток.

2. Асимметричный , при котором образуются две клетки, одна из которых в дальнейшем продолжает нормально делиться, а другая либо теряет эту способность, либо дает начало клеткам, которые прекращают размножаться через несколько поколений. Например, при спиральном дроблении яйцеклетки образуются макромер, который в дальнейшем делится нормально и микромер, который делится несколько раз, а затем его деление прекращается.

3. Трансформирующий , при котором обе дочерние клетки претерпевают необратимые изменения и прекращают делиться. Например, в кожном эпителии клетки базального слоя делятся, затем в них начинает накапливаться роговое вещество кератогиалин, они теряют способность к делению и отмирают.

Регуляция митотической активности . Изучение митотического цикла позволило установить общую закономерность: количество образующихся путем размножения клеток равно количеству отмирающих. Очевидно, популяция клеток, составляющая ткань, представляет собой саморегулирующуюся систему.

Каждой клетке присуща способность делиться, но в ряде случаев эта способность заторможена или блокирована. Митотическая активность – это относительное количество делящихся клеток в единицу времени. Она подвержена значительным колебаниям. Так, обнаружен суточный ритм митозов в клетках различных органов. Наибольшее число клеточных делений наблюдается в периоды покоя. Усиленная функция органа или организма в целом совпадает с низкой митотической активностью. Во многих случаях это обусловлено влиянием гормонов на митотическую активность клеток. Например, при возбуждении или болевом раздражении выделяется адреналин, который тормозит количество митозов.

На митотическую активность оказывают влияние внешние условия, такие как: температура (существует определенный температурный оптимум); определенное количество кислорода (при недостатке кислорода митотическая активность снижается); реакция среды.

Человек научился регулировать митотическую активность с помощью специфических факторов. Так, слабые дозы наркотиков, которые повышают вязкость цитоплазмы, рентгеновские лучи и радиоактивное излучение подавляют митотическую активность (это находит применение при лечении онкозаболеваний). Для увеличения скорости деления клеток применяют эмбриональный сок (вытяжка из тканей и органов эмбрионов, содержащая много РНК) и трефоны (особые вещества, образующиеся при разрушении лейкоцитов). Эти вещества используются в медицине для изготовления препаратов, стимулирующих митотическую активность клеток и способствующих заживлению ран и обновлению организма.

Синтез ДНК и митоз – это два процесса, которые непосредственно не связаны друг с другом, то есть окончание синтеза ДНК не выступает непосредственной причиной вступления клетки в митоз. Поэтому в ряде случаев клетки после удвоения хромосом не делятся; как следствие редупликации ДНК ядро и вся клетка увеличиваются, становятся полиплоидными, но количество клеток при этом не возрастает. Данный результат может быть достигнут путем либо эндомитоза, либо эндорепродукции.

Эндомитоз – это процесс, при котором хромосомы после редупликации спирализуются, становятся видны в световой микроскоп, но веретено деления не образуется и ядерная мембрана не распадается, поэтому расхождение хромосом к полюсам клетки не происходит. В промежутках между образованием хромосом ядро может принимать вид нормального интерфазного ядра. В самом процессе эндомитоза по стадиям цикла хромосом можно выделить эндопрофазу , сходную с профазой митоза, эндометафазу, эндотелофазу . Поскольку оболочка ядра сохраняется, и хромосомы не расходятся, клетки оказываются полиплоидными. Например, в клетках мальпигиевых сосудов водяного клопа Gerris ядро содержит число хромосом, равное 32 n , а в слюнных железах – несколько сотен. Кроме этого, эндомитоз описан у некоторых инфузорий, у целого ряда растений. По-видимому, этот процесс имеет определенное функциональное значение, которое состоит в том, что не прерывается деятельность клетки.

Один из видов эндомитоза – политения – наблюдается в тканях двукрылых. Например, в ядрах клеток слюнных желез видны гигантские хромосомы, количество которых соответствует гаплоидному набору. При политении в S -периоде при редупликации ДНК новые дочерние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следующий цикл редупликации, снова удваиваются и не расходятся. Постепенно в результате этих процессов образуется многонитчатая, политенная структура хромосомы интерфазного ядра. Например, в клетках слюнных желез личинок дрозофилы плоидность достигает 1024 n ; одновременно с увеличением плоидности увеличиваются и размеры клеток.

К полиплоидности клетки приводит также эндорепродукция . Это процесс, при котором удвоенные хромосомы спирализуются, ядерная мембрана распадается, хромосомы контактируют с цитоплазмой, но не образуется веретено деления (или оно разрушено). В результате хромосомы распадаются на хроматиды, которые не могут разойтись к полюсам клетки, вокруг них восстанавливается ядерная мембрана, хромосомы деспирализуются, цитокинез не происходит. Как постоянный процесс эндорепродукция наблюдается в клетках печени, эпителия мочевыводящих путей человека и млекопитающих.

Эндорепродукцию можно вызвать искусственно путем охлаждения делящихся клеток или обработки их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином). Этот прием часто используется в селекции растений для получения полиплоидных сортов.

Амитоз, или прямое деление

Прямое деление клетки, или амитоз, было обнаружено и описано раньше митотического деления. Однако это явление встречается гораздо реже, чем основной, митотический, тип деления. Амитоз – это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению двух клеток, однако чаще всего он приводит к разделению ядра и к проявлению дву- или многоядерных клеток.

Встречается эта форма деления практически у всех эукариот:

– у одноклеточных организмов (амитозом делятся полиплоидные макронуклеусы инфузорий);

– в клетках отживающих, обреченных на гибель и дигенерирующих, либо находящихся в конце своего развития и, главное, не способных дать в дальнейшем полноценные элементы (амитотическое деление ядер в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов);

– при различных патологических процессах, таких как злокачественный рост, воспаление, регенерация и т.д.;

– в тканях растущего клубня картофеля, эндосперме, стенках завязи пестика и паренхиме черешков листьев;

– в клетках печени, хрящевых клетках, клетках мочевого пузыря, роговицы глаза.

Обычно амитотическое деление клетки начинается с изменения формы и числа ядрышек, которые могут фрагментироваться и увеличиваться в числе или же делиться перетяжкой. В последнем случае они приобретают вначале гантелевидную форму. Вслед за делением ядрышек или одновременно с ним происходит деление ядра. Описано несколько способов прямого деления ядра. Один из них – образование перетяжки: при этом ядро тоже принимает форму гантели и после разрыва перетяжки образутся два ядра. При другом способе на поверхности ядра образуется рубцевидная инвагинация, насечка, которая, углубляясь внутрь, делит ядро на две части. Такая насечка может возникнуть в одном месте ядра, но иногда она имеет кольцевидную форму. Чаще всего встречается множественное деление ядра, его фрагментация. При этом могут образоваться ядра неравной величины, что характерно для деления ядер в гигантских клетках при различных патологических процессах.

Амитоз, в отличие от митоза, является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны.

Мейоз. Типы мейоза. Значение мейоза.

Мейоз (от гр. meiosis – уменьшение) – это особый способ деления клеток, в результате которого происходит редукция числа хромосом вдвое и переход клеток из диплоидного состояния (2 n ) в гаплоидное ( n ). Кроме этого, при мейозе происходит еще целый ряд процессов, отличающих этот тип деления от митоза. В первую очередь это рекомбинации генетического материала, обмен участками между гомологичными хромосомами (кроссинговер). Кроме того, для мейоза характерна активация транскрипции в профазе первого деления и отсутствие фазы синтеза между первым и вторым делениями. С помощью мейоза образуются споры и половые клетки – гаметы.

Мейоз впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений.

Мейоз включает два быстро следующих одно за другим деления:

Перед началом редукционного деления происходит удвоение хромосом в интерфазе. А между редукционным и эквационным делениями мейоза временной интервал очень короткий и удвоения ДНК не происходит.

Мейоз I (редукционное деление) включает 4 фазы: профаза I , метафаза I , анафаза I и телофаза I . Рассмотрим их более подробно.

В профазе I выделяют 5 стадий:

1). Лептотена (лептонема ), или стадия тонких нитей. В ядре начинают выделяться хромосомы в виде тонких длинных нитей. Иногда они петлеобразно изгибаются и направлены свободными концами к центриоли, то есть к полюсу, образуя так называемый букет. Характерным для лептонемы является появление на тонких хромосомах сгустков хроматина – хромомеров, которые как бы нанизаны в виде бусинок и располагаются по всей длине хромосомы.

2). Зиготена (зигонема ), или стадия сливающихся нитей. Происходит конъюгация гомологичных хромосом. При этом гомологичные хромосомы (уже двойные после S -периода интерфазы) сближаются и образуют биваленты. Это парные соединения удвоенных гомологичных хромосом, то есть каждый бивалент состоит из 4-х хроматид.

3). Пахитена (пахинема ), или стадия толстых нитей, называется так потому, что благодаря полной конъюгации гомологов профазные хромосомы как бы увеличились в толщине. На этой стадии происходит второе, очень важное событие, характерное для мейоза – кроссинговер , то есть взаимный обмен идентичными участками по длине гомологичных хромосом. Генетическим следствием кроссинговера является рекомбинация сцепленных генов. Таким образом, каждый бивалент содержит четыре хроматиды и тетраплоидный набор ДНК (4 n 4 c ).

4). Диплотена (диплонема ), или стадия двойных нитей. Биваленты начинают расходиться, но в некоторых точках остаются перекрещенными и сцепленными ( хиазмы ). Считается, что именно в местах хиазм и произошел кроссинговер в предыдущей стадии. Происходит укорачивание и конденсация хромосом, отчетливо становится видно, что каждый бивалент состоит из четырех хроматид.

5). Диакинез , или стадия обособления двойных нитей, характеризуется максимальной спирализацией бивалентов, уменьшением числа хиазм, потерей ядрышек. Биваленты становятся более компактными, места соединения гомологичных хромосом расположены на их концах. Оболочка ядра распадается, формируется веретено деления.

Рекомендуем прочесть:  Па За День До Овуляции Вероятность Зачатия

Метафаза I . Биваленты движутся к экватору клетки, выстраиваются в экваториальной плоскости, прикрепляются своими центромерами к микротрубочкам веретена деления и образуют «материнскую звезду».

Анафаза I . Биваленты распадаются и хромосомы, из которых они состояли, расходятся к полюсам клетки. В отличие от митоза, расходятся не сестринские хроматиды, а гомологичные хромосомы, каждая из которых состоит из двух сестринских хроматид. С генетической точки зрения, при анафазе I по разным клеткам расходятся аллельные гены, располагающиеся в разных гомологичных хромосомах, диплоидных по количеству хроматид и содержанию ДНК (2 n 2 c ).

Телофаза I . Происходят те же процессы, что и при митозе. В результате получаются две клетки с диплоидным набором хромосом и ДНК (2 n 2 c ).

Затем наступает очень короткая интерфаза, где не происходит синтеза ДНК и клетки приступают ко II -му делению мейоза (эквационному).

Мейоз II по морфологии и последовательности фаз ничем не отличается от митоза и также подразделяется на четыре фазы: профаза II , метафаза II , анафаза II , телофаза II . В результате получаются четыре клетки с гаплоидным набором хромосом и ДНК (1 n 1 c ).

Таким образом, главные отличия мейоза от митоза наблюдаются в профазе I и анафазе I . Отличается профаза I и своими временными параметрами: по сравнению с митозом продолжительность деления клеток в процессе мейоза намного длительнее. Так, у человека при сперматогенезе (который протекает относительно быстро) стадии лептотены и зиготены занимают 6,5 суток, пахитена – 15 суток, диплотена и диакинез – 0,8 суток. У других организмов могут быть другие сроки, но общая тенденция сохраняется. Это особенно наглядно видно при созревании женских половых клеток у животных, у которых яйцеклетки могут останавливаться в развитии на несколько месяцев и даже лет в стадии диплотены профазы I -го мейотического деления. Это связано с интенсивным ростом ооцита, накоплением желтка. При этом образуются хромосомы типа «ламповых щеток»; их петли – это деспирализованные участки ДНК, с которых активно считывается информация для синтеза белков. В это время синтезируется и-РНК, функционируют ядрышки. Подобные процессы отсутствуют в профазе митоза и это еще одно отличие мейоза от митоза.

У растений мейоз также намного длительнее митоза по времени. Так, у традесканции весь мейоз занимает около 5 суток, из которых на профазу I -го деления приходится 4 суток.

Типы мейоза . Если мы будем рассматривать жизненный цикл организмов, то есть их развитие от момента слияния двух гамет до воспроизведения новых, то можно наблюдать постоянное чередование фаз, отличающихся по числу хромосом в клетке. Это – гаплофаза, представленная клетками с наименьшим числом хромосом, и диплофаза, в котором участвуют клетки с двойным (диплоидным) набором хромосом.

Соотношение времени продолжительности этих фаз неодинаково для разных систематических групп организмов. Так, например, у грибов в жизненном цикле преобладает гаплоидная фаза, у многоклеточных животных – диплоидная. В зависимости от положения в жизненном цикле развития организмов выделяют 3 типа мейоза: зиготный, гаметный, промежуточный.

Зиготный тип – мейоз наступает сразу после оплодотворения, в зиготе. Это характерно для аскомицетов, базидиомицетов, некоторых водорослей, для жгутиконосцев, споровиков и других организмов, в жизненном цикле которых преобладает гаплоидная фаза. Например, у вольвокса вегетативные клетки имеют гаплоидный набор хромосом, размножаются бесполым способом; но во время полового процесса они делятся с образованием гамет, которые сливаются и образуют зиготу с диплоидным набором хромосом. В таком виде диплоидная зигота приступает к мейозу, в результате чего образуются 4 вегетативные гаплоидные клетки, и цикл повторяется снова.

Гаметный тип – мейоз происходит во время созревания гамет. Он встречается у многоклеточных животных, у некоторых простейших и низших растений. В жизненном цикле организмов с таким типом мейоза преобладает диплоидная фаза. Например, у млекопитающих мейоз происходит в фазе созревания половых клеток, яйцеклетки и сперматозоиды имеют гаплоидный набор хромосом, при оплодотворении возникает зигота с диплоидным набором хромосом, за счет деления которой образуются все диплоидные клетки организма.

Промежуточный (споровый) тип мейоза встречается у высших растений, у фораминифер, коловраток. Он происходит во время спорообразования, включаясь между стадиями спорофита и гаметофита. В данном случае в органах размножения диплоидных организмов происходит образование гаплоидных мужских (микроспоры) и женских (мегаспоры) половых клеток. Отличием от предыдущего типа является то, что после мейоза гаплоидные клетки не сразу копулируют, а еще несколько раз делятся во время редуцированной гаплофазы. Например, у цветковых растений мейоз происходит при образовании микро- и мегаспор, которые имеют гаплоидный набор хромосом, а затем из них путем нескольких митотических делений образуются пыльцевые зерна и зародышевый мешок.

Значение мейоза . Во-первых, благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях каждого вида организмов, размножающихся половым путем.

Во-вторых, процесс мейоза обеспечивает чрезвычайное разнообразие генетического состава гамет в результате как кроссинговера в профазе I , так и различного сочетания отцовских и материнских хромосом при их расхождении в анафазе I . Это способствует появлению разнообразного и разнокачественного потомства при половом размножении.

Образование половых клеток

Обособление первичных половых клеток от соматических у большинства животных происходит, как правило, на ранних стадиях эмбрионального развития. Затем эти клетки собираются в половую железу, и образуется обособленный зачаток, состоящий из первичных половых и окружающих их соматических клеток, – зачаток половой железы. У низших животных (губки, кишечнополостные) соматические клетки способны превращаться в половые на протяжении всего жизненного цикла. У позвоночных животных такого не наблюдается.

Образование половых клеток носит название гаметогенез , он подразделяется на сперматогенез и оогенез.

Сперматогенез – это развитие мужских половых клеток (сперматозоидов). Рассмотрим этот процесс на примере млекопитающих. Выделяют 4 периода сперматогенеза.

1. Период размножения. Первичные мужские половые клетки сперматогонии (2 n ) делятся митотическим путем, и количество их многократно возрастает.

2. Период роста. В этом периоде клетки называются сперматоциты 1-го порядка , они увеличиваются в размерах (примерно в 4 раза), в них происходит удвоение ДНК и другие процессы подготовки к последующему делению (мейозу). Сперматоциты 1-го порядка имеют тетраплоидный набор хромосом (4 n ).

3. Период созревания. Сперматоциты 1-го порядка делятся сначала редукционным делением и получаются 2 сперматоцита 2-го порядка (2 n ), а после эквационного деления – 4 сперматиды ( n ).

4. Период формирования. Сперматиды имеют округлую форму и не способны к движению. Поэтому в этом периоде происходит их превращение в сперматозоиды, имеющие специфическую форму: головка, шейка, хвостик. Хвостатые сперматозоиды имеют гаплоидный набор хромосом ( n ), подвижны и способны к оплодотворению.

Оогенез – это развитие женских половых клеток (яйцеклеток). Он включает 3 периода.

1. Период размножения. Первичные женские половые клетки оогонии делятся митотическим способом, они имеют диплоидный набор хромосом (2 n ). У большинства млекопитающих этот процесс происходит в первой половине внутриутробного развития.

2. Период роста. В отличие от сперматогенеза в оогенезе период роста длительный и подразделяется на период малого роста и период большого роста. В периоде малого роста ооцит 1-го порядка увеличивается незначительно за счет удвоения ДНК, увеличения объема цитоплазмы; этот период соответствует интерфазе перед мейотическим делением. В периоде большого роста ооцит увеличивается в сотни, а то и в тысячи раз за счет накопления желтка; чаще всего этот период соответствует профазе I мейоза (стадия диплотены). Ооцит 1-го порядка имеет тетраплоидный набор хромосом (4 n ).

3. Период созревания. Во время редукционного деления ооцит 1-го порядка делится неравномерно и образуется ооцит 2-го порядка , имеющий диплоидное ядро (2 n ) и большой объем цитоплазмы, и первое направительное тельце ( полоцит) , также имеющий диплоидное ядро, но содержащий очень мало цитоплазмы.

Во время эквационного деления ооцит 2-го порядка вновь делится неравномерно и образуется большая оотида и маленькое направительное тельце (второй полоцит). Первый полоцит тоже делится на две одинаковые клетки. Таким образом, получаются 4 клетки с гаплоидным набором хромосом ( n ), но лишь одна из них – оотида соответствует яйцеклетке и способна в дальнейшем к оплодотворению. Полоциты вследствие нарушения ядерно-плазменного отношения нежизнеспособны и вскоре погибают.

Таким образом, в результате сперматогенеза из одной первичной половой клетки развивается 4 жизнеспособных спермия, а при оогенезе из одной оогонии – только 1 яйцеклетка, способная к оплодотворению.

Митоз , то есть непрямое деление, – основной способ деления эукариотических клеток.

Общее свойство всех живых систем – способность к самовоспроизводству, благодаря чему возможен рост организма, а также замещения отмерших и поврежденных тканей. Продолжительность жизни разных клеток неодинакова. Так, эпителиальные клетки кишечника живут до 24 часов, клетки кожи – от 5 до 35 дней, эритроциты – 120 дней, клетки печени – 180 дней. Клетки в течение всей жизни размножаются делением.

Регуляция деления клеток происходит на тканевом уровне и является сложным физиологическим процессом их регенерации.

Клетки размножаются двумя способами: прямым и косвенным разделением. Большинство клеток организма размножается косвенным разделением (митоз). Совокупность изменений, которые происходят в клетке перед делением и во время него, называется митотическим циклом, в котором различают четыре периода: 1) собственно митотического деления; 2) постмитотические; 3) редупликации ДНК; 4) накопление энергии.

Период собственно митотического деления короткий – не более чем

5% времени в цикле. В этот период клетка делится на две дочерние. В постмитотические период, который может длиться несколько часов, наращивается масса клеток. После этого наступает период редупликации ДНК, во время которого усиливается синтез белка, происходит удвоение ДНК, т.е. образуется точная копия молекул ДНК, которые при повторном деления клетки дадут наследственный материал для двух новых дочерних клеток. В последний, четвертый период, накапливается энергия, необходимая для дальнейшего процесса. Способность к делению имеют только молодые клетки. Продолжительность митотического цикла у разных клеток различна – от нескольких минут до 2-30 часов. Она зависит от вида клеток, условий окружающей среды и др. Со старением способность клеток к размножения снижается.

Наряду с митозом может происходить и прямой деление клеток (амитоз), когда клетка постепенно делится пополам и из нее образуются две дочерние. Иногда такое разделение является неполным, – ядро ​​делится надвое, а протоплазма – нет, в результате чего образуются многоядерные клетки.

Митоз (кариокинез) происходит в четыре этапа: профаза, метафаза, анафаза и телофаза.

При профазы в клетке набухает ядро, хроматин из зерен превращается в сплошную нить, сворачиваясь при этом в подвижный клубок.

Далее с хроматиновых нитей возникают хромосомы, каждая из которых делится на две дочерние. По этой фазы кариолема растворяется, исчезает ядрышко, центросома делится на две центриоли, которые расходятся по полюсам клетки.

В метафазе центриоли занимают свое постоянное место на полюсах клетки и после этого формируется ахроматинового веретено, состоящее из многих нитей, образовавшиеся из ахроматинового вещества ядра. Одним концом эти ниточки прикрепляются к центриоли, а другим – к середине хромосомы.Хромосомы же на это время располагаются в центральной части клетки, в виде фигуры, похожей на звезду. Под конец этой фазы хромосомы становятся короче и толще, начинают продольно делиться на две дочерние, но по экватору они еще соединены между собой.

В анафазе дочерние хромосомы благодаря накручивания на центриоли нитей ахроматинового веретена расходятся к противоположным полюсам, образуя при этом фигуру двойной звезды.

В телофазе дочерние хромосомы собираются вместе, уплотняются и образуют новые ядра, в которых появляются кариолема и ядрышко. Одновременно происходит перетягивание в экваториальной зоне тела клетки и образуются две самостоятельные дочерние клетки.

Длительность этих фаз – от 1 до 1,5 часов. Период между клеточным делением называется интерфазой. В митотический цикл она охватывает время трех периодов: постмитотические, редупликации ДНК и накопление энергии.

По Д.С. Саркисов, различают два вида регенерации: клеточную и внутриклеточную. Клеточная регенерация характеризуется увеличением количества клеток при неизменности их размеров. Этот вид регенерации присущий эпителиальным клеткам кожи, слизистых оболочек и всем соединительным тканям. Внутриклеточная регенерация характеризуется увеличением размеров клеток и их компонентов, повышенной активностью внутриклеточных структур. Этот вид регенерации характерен для ганглиозных клеток центральной нервной системы и, как считают некоторые ученые, имеет место и в развитии сердечного и скелетных мышц.

Наряду с клеточными формами организации живого вещества в человеческом организме есть и неклеточные. Это межклеточная основное вещество. Кроме этого, клеточные структуры могут иметь упрощенную (эритроциты крови не имеют ядер, кровяные пластинки) или осложненную (симпласты, синцитии) форму существования. Примером симпласта является исполосовано мышечное волокно. Его нельзя назвать клеткой, поскольку в нем много ядер. Синцитий – это структуры, которые с помощью отростков образуют сплошную сетку. Например, в ретикулярной ткани протоплазма одних клеток благодаря отросткам сливается с протоплазмой других клеток.

Митоз (кариокинез) происходит в четыре этапа: профаза, метафаза, анафаза и телофаза.

Давайте будем совместно делать уникальный материал еще лучше, и после его прочтения, просим Вас сделать репост в удобную для Вас соц. сеть.